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STABILIZED INTEGRATION OF HAMILTONIAN SYSTEMS WITH

HARD-SPHERE INEQUALITY CONSTRAINTS∗
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Abstract. We consider numerical methods for resolving the dynamics of a Hamiltonian N-
body problem subject to hard-sphere inequality constraints. The dynamics of these mixed systems
consists of smooth flow of a Hamiltonian system between collisions with an impulsive momentum
exchange at the points of collision. The inclusion of these impulses makes traditional backward
error analysis inappropriate since the flow is discontinuous and cannot be interpreted using a single
modified smooth Hamiltonian system. We introduce two methods which respect the underlying
modified smooth Hamiltonian system through the use of a modified map and collision operator at
points of collision. In numerical experiments, these new methods show dramatically improved energy
conservation over long time intervals.
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1. Introduction. The dynamics of a collection of rigid spherical bodies interact-
ing in a smooth potential field can be described by a collisional Hamiltonian system.
The dynamics is characterized by smooth Hamiltonian flow between contacts, with
impulsive forces acting at the points of collision. Due to the inclusion of these im-
pulsive forces, traditional methods for smooth N-body systems can be applied only
between collisions. At points of contact, the momenta of the colliding spheres are
exchanged in the normal direction, which introduces a discontinuity in the trajectory
in phase-space. This type of model setting arises in molecular and polymer dynam-
ics studies [4, 16, 19]. Related problems arise in development of computer gaming
(“physics engines”) and in a variety of modeling applications in materials science.

The dynamics of pure hard-sphere systems, in the absence of a smooth potential,
can be resolved efficiently using a traditional event-driven algorithm [1]. This method
follows the exact linear trajectories of each sphere between collisions, updating the
momenta of each pair of colliding spheres at each collision. Once additional smooth
forces are introduced, this algorithm can no longer be applied since the trajectories
between collisions are not linear (and cannot be resolved exactly).

A number of hybrid methods for approximating the dynamics of collisional Hamil-
tonian systems have been proposed in the literature [5, 9, 10, 14, 17, 18]. In all of these
methods the traditional Störmer–Verlet algorithm [21] is used to resolve the trajec-
tory between collisions. Points of collision are detected by either checking for overlap
at the end of the step [14] or during the step [9, 17, 18] or by formally solving for
the time to the next collision [5, 10], and collisions are then resolved by momentum
exchange between the colliding spheres using the energy/momentum balance of an
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HAMILTONIAN SYSTEMS WITH HARD-SPHERE CONSTRAINTS 135

elastic collision. Depending on the algorithm, the strength of the impulsive forces is
selected to conserve the “true energy” from the smooth Hamiltonian [10] or a “discrete
energy” corresponding to a discrete variational principle [5].

The principle advantage of symplectic integrators, when applied with a fixed
stepsize to a smooth Hamiltonian system, is the enhanced stability, which can be
understood through backward error analysis. A Hamiltonian perturbation series may
be developed in such a way that the numerical method can be viewed as equivalent (up
to a minor discrepancy) to the exact dynamics of the modified continuous system [3,
7, 15]. This implies a stability result for the underlying symplectic integrator which
can be used to explain the lack of secular energy drift over very long time intervals.

The challenge in understanding hybrid numerical methods using backward error
analysis is twofold. First, near points of collision the algorithm is effectively applying
a symplectic integrator with a variable stepsize. Hence, we cannot view the numerical
trajectory as the product of a single modified Hamiltonian. Second, the trajectory is
not continuously differentiable since the exact solution is only piecewise smooth (i.e.,
smooth between collisions with discontinuities at the collision times).

The objective of this paper is to develop hybrid algorithms which can be under-
stood using backward error analysis. We will do this by respecting the underlying
modified Hamiltonian of the smooth numerical method through points of collision. We
hypothesize a reference Hamiltonian expansion associated to a fixed timestep map,
and propagation within a collisional step is then designed to preserve this modified
Hamiltonian to a certain accuracy. At the point of impact, a modified collision oper-
ator is developed which likewise preserves the reference Hamiltonian. The result is a
scheme with superb long-term stability properties relative to the existing alternatives,
albeit at an increased per-timestep cost. In the molecular setting, where impacts are
usually frequent, our scheme can be used to compute accurate benchmark solutions.

In section 2, we introduce collisional dynamics for Hamiltonian systems, defining
both the collision time and the collision operator. In the subsections, we review
the primitive splitting algorithm [18], collision Verlet algorithm [10], and variational
collision integrator [5]. In section 3, we discuss backward error analysis for symplectic
integrators applied to smooth Hamiltonian systems and provide the first two terms of
the modified Hamiltonian for the Verlet method. In section 3.1, we derive the time-
reversible modified collision Verlet algorithm (MCVA), based on a modified collision
operator and higher-order integration of the modified flow in pre- and postcollision
steps. In section 3.2, we introduce a projected collision Verlet algorithm (PCVA)
which uses a non–time-reversible modified energy projection to stabilize the collision
Verlet algorithm (CVA). In section 4, we present results from numerical experiments
highlighting the potential improvements afforded the modified (MCVA) and projected
(PCVA) methods. Finally, our conclusions are given in section 5.

2. Collisional dynamics. We consider the dynamics of a system of N hard
spheres interacting under a conservative potential V (q):

H (q, p) =
1

2
ptM−1p + V (q) ,

d (qi, qj) ≥ ri + rj ∀i �= j, i, j ∈ 1 · · ·N.(2.1)

In this notation, the ith sphere has radius ri, and the distance between two spheres
is given by the standard Euclidean metric, d (qi, qj) = ‖qi − qj‖2.

Given the flow map, Ψ, for the contact-free system, H, we can describe the flow
map for the hard-sphere system, Φt, as a sequence of smooth steps separated by
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136 STEPHEN D. BOND AND BENEDICT J. LEIMKUHLER

collisions. Assuming nc collisions within the interval [0, t], we have

(2.2) Φt = Ψ∆τnc
◦R ◦ · · · ◦ Ψ∆τ1 ◦R ◦ Ψ∆τ0 .

The time of each collision is denoted by τi, and the time increment between τi and
τi+1 by ∆τi. The endpoints of the interval are assigned to τ0 = 0 and τnc+1 = t. The
map R is the collision operator which exchanges momenta between the two colliding
spheres,

R (q, p) = (q, p + α�ucol) ,

where �ucol is a vector normal to the inequality constraint surface and α is a nonzero
Lagrange multiplier selected to enforce conservation of energy,

H ◦R = H.

The resulting trajectory is piecewise smooth on the restricted phase-space

ΩHS = {(q, p) ∈ Γ | d (qi, qj) ≥ ri + rj ∀i �= j, i, j ∈ 1 · · ·N } ,

where Γ is the phase-space for the contact-free problem.

2.1. Splitting methods. One technique for handling the inclusion of smooth
forces in hard-sphere simulations is to use a splitting method. To derive a numerical
method, one may start by decomposing the full Hamiltonian into terms, Ha and Hb,
which contain the kinetic and potential energy, respectively:

Ha (q, p) =
1

2
ptM−1p, Hb (q, p) = V (q) ,

d (qi, qj) ≥ ri + rj ∀i �= j, i, j ∈ 1 · · ·N.

The flow of the Ha system is pure hard-sphere motion which can be solved exactly
with a standard event driven algorithm. The Hb system applies the force to the
momenta, leaving the particles fixed. Composing a full timestep of the flow of Ha

with two half-timesteps of Hb results in a hard-sphere analogue to the Verlet method,
first proposed by Suh et al. [18] in an equivalent form. Denoting the t-flow of the
hard-sphere system by the map ΨHS

t , we can write this splitting algorithm as follows:

Primitive splitting algorithm (PSA):

p
n+1/2
− = pn − ∆t

2 ∇V (qn),
(

qn+1, p
n+1/2
+

)

= ΨHS
∆t

(

qn, p
n+1/2
−

)

,

pn+1 = p
n+1/2
+ − ∆t

2 ∇V
(

qn+1
)

.

As illustrated in [10] using a one-dimensional model problem, the energy is (in
general) only conserved to first order if there is a collision within the step. The reason
is that although the operator splitting is symmetric, the collisions do not necessarily
occur symmetrically within the step. To understand this better, we consider a general
two-body problem in R

3, with one body fixed at the origin, and a sphere diameter l:

H (q, p) =
1

2m
‖p‖

2
+ V (q) with ‖q‖ ≥ l.
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Applying the PSA to this system, on an interval with a single collision, results in

p
1/2
− = p0 − 1

2∆t∇V
(

q0
)

, qc = q0 + ∆tc p
1/2
− /m,

�ucol = qc, p
1/2
+ = p

1/2
− + α�ucol,

q1 = qc + (∆t− ∆tc) p
1/2
+ /m, p1 = p

1/2
+ − 1

2∆t∇V
(

q1
)

,

where ∆tc and qc are the time and position of the collision, respectively. The nonzero
Lagrange multiplier, α, is selected under the constraint that the energy is conserved
during the collision:

α = −2
�ucol · p

1/2
−

�ucol · �ucol
.

To find the change in energy over one step, we insert the expressions for q1 and p1

into the Hamiltonian and expand about the point of collision, q = qc:

∆H := H
(

q1, p1
)

−H
(

q0, p0
)

= −
(∆t− 2∆tc)

m

qTc p
1/2
−

qTc qc
qTc ∇V (qc) + O

[

∆t2
]

.

The conservation of energy is only first order through a collision, unless one of
three properties holds: (1) the collision happens at the exact middle of the timestep,
(2) the directional derivative of the potential is zero along the vector qc, or (3) the
momentum vector at the point of collision is orthogonal to qc. Assuming a finite
number of collisions on any fixed time interval, it can be shown that the primitive
algorithm is only first-order accurate [10].

2.2. Collision Verlet algorithm. To correct the order-reduction in the prim-
itive algorithm, an improved method called “collision Verlet” was proposed in [10].
The idea is to approximate the smooth maps in the exact flow, as written in (2.2), by
the Verlet map, Ψ∆t:

qn+1 = qn + ∆tM−1pn −
∆t2

2
∇V (qn) ,

pn+1 = pn −
∆t

2
∇V (qn) −

∆t

2
∇V

(

qn+1
)

.

This results in a method that steps between collisions with Verlet and applies the
(impulse) momentum exchange map, R, at each collision. The time to the next
collision is defined as the smallest positive stepsize that results in collision (i.e., violates
the inequality constraints):

CollisionTime [Ψ, q, p] := min {t > 0 |Ψt (q, p) ∈ ∂ΩHS } .

By stepping between collisions with Verlet, the collisions occur only between Verlet
steps and there is no order-reduction in the local conservation of energy. To maintain
stability and reversibility, a fixed outer timestep is imposed. The resulting algorithm
follows.
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Collision Verlet Algorithm (CVA).
(

q̂0, p̂0
)

= (qn, pn)

τmax = ∆t and k = 0

while (τmax > 0)

∆τk = min
{

τmax,CollisionTime
[

Ψ, q̂k, p̂k
]}

(q̂c, p̂c) = Ψ∆τk

(

q̂k, p̂k
)

if “collision” then
(

q̂k+1, p̂k+1
)

= R (q̂c, p̂c)

else
(

q̂k+1, p̂k+1
)

= (q̂c, p̂c)

end-if
τmax = τmax − ∆τk and k = k + 1

end-while
(

qn+1, pn+1
)

=
(

q̂k, p̂k
)

This method can be generalized by replacing the base numerical map, Ψ, with an-
other symplectic time-reversible method. However, this could significantly complicate
the computation of the collision time. For the standard N-body problem with Verlet
as the base map, collision times are determined by finding the smallest positive root
of a sequence of quartic polynomials for each pair of particles. This can be performed
relatively efficiently through the use of hash-tables, neighbor-lists, and root bracket
techniques (see [10]). Most important is that solving for the collision time does not
require implicit iteration of the smooth forces.

2.3. Variational collision integrator. An alternative approach for deriving
geometric integrators is to discretize the Lagrangian directly [11, 12, 13]. The resulting
algorithms are typically two-step methods, but can be rewritten in one-step form
using a Legendre transformation. For example, the standard second-order discrete
Lagrangian,

Ld

(

qn, qn+1,∆t
)

:=
∆t

2

(

qn+1 − qn

∆t

)T

M

(

qn+1 − qn

∆t

)

− ∆t
V (qn) + V

(

qn+1
)

2
,

can be used to derive the well-known Störmer method

1

∆t2
M

(

qn+1 − 2qn + qn−1
)

= −∇V (qn) .

One can show that this is equivalent to the leapfrog/Verlet method with the half-step
momenta defined by

pn+1/2 :=
1

∆t

(

qn+1 − qn
)

.

More recently, this approach has been applied to nonsmooth mechanics, which has
allowed for the development of nonsmooth variational integrators for contact problems
(see [5]). By considering variations in the trajectory and collision time, one can obtain
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equations for both the smooth map between collisions and the impulses at points of
collision. For the second-order discrete Lagrangian, the map between collisions is the
Störmer/leapfrog/Verlet map. At points of collision, the standard collision map is
applied,

Rα (q, p) = (q, p + α�ucol) ,

with the “strength of collision,” α �= 0, selected to conserve the “discrete energy”
function,

Ed

(

qn+1, qn,∆t
)

:=
1

2

(

qn+1 − qn
)T

∆t
M

(

qn+1 − qn
)

∆t
+

V
(

qn+1
)

+ V (qn)

2
,

across each collision.
Comparing this method to the CVA, we find that they are identical up to the

determination of the strength of collision, α. By conserving the discrete energy (as
opposed to the exact energy), the discrete Lagrangian method is implicit in the forces
due to the coupling between strength and time of collision.

3. Backward error analysis. In the context of collisional dynamical systems
classical forward error analysis is impractical due to the conditioning of an individual
trajectory. In particular, the flow corresponding to two nearly identical initial condi-
tions diverges exponentially over a short time interval due to the intrinsic sensitivity
of the flow to perturbation. This sensitivity is inherited by the numerical method,
and bounds on the accuracy of the numerical trajectory must have a corresponding
exponential growth.

In backward error analysis, the error induced by the numerical algorithm is ex-
pressed as a perturbation of the problem or vector field. This is especially appealing
in areas such as molecular dynamics where statistical averages are used to compute
properties of the system and it is assumed that these averages are independent of the
initial conditions.

For smooth Hamiltonian systems the connection between a symplectic integrator
and the existence of a modified Hamiltonian system has been investigated by several
authors [3, 15]. A series can be developed by matching terms in the Taylor series
expansions of the numerical method and the solution operator for the modified system.

For the Verlet algorithm,

pn+1/2 = pn −
∆t

2
∇qV (qn) ,

qn+1 = qn + ∆tM−1pn+1/2,

pn+1 = pn+1/2 −
∆t

2
∇qV

(

qn+1
)

,

the modified Hamiltonian can be written as

H∆t
[4,V V ] (q, p) = H (q, p) +

∆t2

4!
H2 (q, p) +

∆t4

6!
H4 (q, p) + O

[

∆t6
]

,

where H2 and H4 are defined by

H2 (q, p) :=
2 pi pj
mi mj

Vqiqj (q) +
−1

mi
Vqi (q)

2
,
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H4 (q, p) :=
−pi pj pk pl
mi mj mk ml

Vqiqjqkql +
−3

mi mj
VqiqjVqiVqj

+
12 pj pk
mi mj mk

VqiqjVqiqk +
6 pj pk

mi mj mk
VqiqjqkVqi .

Here we have employed Einstein notation with summation over all repeated indices.
Subscripts of coordinates indicate partial derivatives with respect to that coordinate.

Note that this modified Hamiltonian is conserved by the Verlet method with
sixth-order accuracy, compared to the original Hamiltonian which is conserved only
to second-order. Since it is a higher-order invariant, it is reasonable to expect that
preserving the modified Hamiltonian through collisions would stabilize the resulting
numerical method.

3.1. Modified collisions. Unfortunately, there is no analogous modified Hamil-
tonian when symplectic integrators are naively applied to nonsmooth collisional sys-
tems. For the CVA, it is during the steps involving collisions that the traditional
backward error analysis breaks down. To remedy this situation, we explore the rea-
sons for this destabilization.

The first possible explanation lies in the use of a variable stepsize to step to
and from the point of collision. This variable stepsize means we can no longer view
the numerical trajectory as being close to the exact dynamics of a single modified
Hamiltonian system. Hence, the stability implied by this traditional backward error
analysis for collision-free systems must be modified for the collisional case.

One way to remedy this problem is to use a higher-order integrator to solve for
the dynamics of the modified Hamiltonian, H∆t

[2,V V ], during these steps to and away

from points of collision. As long as the collisions are relatively infrequent (e.g., high
accuracy or low density), most of the steps will be propagated by the less expensive
Verlet method, and the added cost of the more accurate integrator should not be
prohibitive.

The second possible cause of the destabilization is that, while the collision opera-
tor conserves energy, it does not conserve the modified Hamiltonian. For the standard
collision operator, the strength of collision is defined by requiring conservation of the
unmodified energy:

H ◦Rα (q, p) −H (q, p) = 0,

Rα (q, p) := (q, p + α�ucol) .

This is a quadratic equation with one nontrivial root,

α = −2
�uT
colM

−1p

�uT
colM

−1�ucol
.

If instead we required the collision map to conserve the second-order modified Hamil-
tonian, H∆t

[2,V V ], we would obtain a different quadratic equation:

H∆t
[2,V V ] ◦Rα̂ (q, p) −H∆t

[2,V V ] (q, p) = 0,

which (in general) has a different solution

α̂ = −2
�uT
col

(

M−1 + ∆t2 V ′′ (q) /12
)

p

�uT
col (M

−1 + ∆t2 V ′′ (q) /12) �ucol
.
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Note: this technique could be extended to the H∆t
[4,V V ] modified Hamiltonian, through

solution of a quartic equation; indeed even higher-order approximations could be
constructed in the same way, albeit at additional computational cost due to the need
to compute higher derivatives of the potential V .

Based on these two observations, we propose the MCVA which respects the mod-
ified Hamiltonian through collisions. In what follows, Ψ is the Verlet algorithm, and
Ψ[∗] is the symplectic fourth-order Gauss method applied to the H∆t

[2,V V ] modified

Hamiltonian. The modified collision operator is denoted by R
[∗]
α , which uses the value

of α that conserves the modified Hamiltonian, H∆t
[2,V V ], when there is a collision (and

is the identity otherwise).

Modified Collision Verlet Algorithm (MCVA).
(

q̂0, p̂0
)

= (qn, pn)

τmax = ∆t and k = 0

while (τmax > 0)

∆τk = min
{

τmax,CollisionTime
[

Ψ[∗], q̂k, p̂k
]}

if (∆τk == ∆t) then
(

q̂k+1, p̂k+1
)

= Ψ∆τk

(

q̂k, p̂k
)

else

(q̂c, p̂c) = Ψ
[∗]
∆τk

(

q̂k, p̂k
)

if “collision” then
(

q̂k+1, p̂k+1
)

= R
[∗]
α (q̂c, p̂c)

else
(

q̂k+1, p̂k+1
)

= (q̂c, p̂c)

end-if

end-if

τmax = τmax − ∆τk and k = k + 1

end-while
(

qn+1, pn+1
)

=
(

q̂k, p̂k
)

At each step in the process, this algorithm conserves the H∆t
[2,V V ] modified Hamil-

tonian to fourth-order accuracy. When there is no collision, the method is simply
the standard Verlet method, Ψ. Stepping both to and from collisions, a fourth-order
geometric integrator, Ψ[∗], is applied to the dynamics of the modified Hamiltonian,
H∆t

[2,V V ]. We should note that it is necessary to use the higher-order method for both
the pre- and postcollision steps, since these steps would otherwise not conserve the

modified Hamiltonian. At the points of collision the modified collision operator, R
[∗]
α ,

preserves the H∆t
[2,V V ] modified Hamiltonian exactly.

Since the collision time is determined by the higher-order method, solving for
the collision time will (in general) require solving an equation which is implicit in
the smooth potential, V . To reduce this cost, we first compute the collision time
using the lower-order Verlet method, Ψ. If a collision is detected, we recompute the
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collision time with the higher-order Gauss method, Ψ[∗]. If the higher-order method
does not find a collision within the time interval, then we assume that there is no
collision, and the algorithm continues. A potential deficiency of this approach is
that some “grazing” collisions may be missed when ∆t is sufficiently large. However,
such collisions are rare, and the cost reduction afforded by “prescreening” using the
standard quartic polynomial-based collision detection is significant. For this reason,
we use this variant in the numerical experiments in section 4.

3.2. Modified energy projection. A far less costly method for conserving the
modified Hamiltonian through collisions is to use projections. There is a considerable
amount of freedom in selecting the type of projection. For simplicity, we apply mo-
menta rescaling after each collision and at the end of steps with collisions. For a step
with nc collisions, this results in the following algorithm.

Projected Collision Verlet Algorithm (PCVA).
(

q̂0, p̂0
)

= (qn, pn)

τmax = ∆t and k = 0

while (τmax > 0)

∆τk = min
{

τmax,CollisionTime
[

Ψ, q̂k, p̂k
]}

(q̂c, p̂c) = Ψ∆τk

(

q̂k, p̂k
)

if “collision” then
(

q̂k+1, p̂k+1
)

= R (q̂c, p̂c)

else
(

q̂k+1, p̂k+1
)

= (q̂c, p̂c)

end-if

if (∆τk �= ∆t) then

Solve H∆t
[2,V V ]

(

q̂k+1, αp̂k+1
)

= H∆t
[2,V V ]

(

q̂k, p̂k
)

Project p̂k+1 = αp̂k+1

end-if

τmax = τmax − ∆τk and k = k + 1

end for
(

qn+1, pn+1
)

=
(

q̂k, p̂k
)

Since the modified Hamiltonian, H∆t
[2,V V ], is quadratic in p, this method requires

solving a scalar quadratic equation for α at each step. If there are no collisions
during the previous step, then the step was propagated by the Verlet method, which
conserves the H∆t

[2,V V ] modified Hamiltonian to fourth-order accuracy. Hence, there
is no need to perform the projection after full Verlet steps to obtain fourth-order
“near conservation” of the modified energy. We should note that the inclusion of
these projections destroys any reversibility in the underlying collisional algorithm. It
is possible to use reversible projections [8]; however, this would involve including a
prestep projection, which would make the resulting algorithm implicit.
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4. Numerical experiment: Impact pendulum chain. As a numerical exper-
iment, we compare the “primitive splitting algorithm” (PSA) [18] and “collision Verlet
algorithm” (CVA) [10] with the new “modified collision Verlet algorithm” (MCVA)
and “projected collision Verlet algorithm” (PCVA). As a test problem, we consider
a chain of hard spheres in two dimensions connected by linear springs and attached
to a hard wall (see Figure 4.1). Each spring has unit rest length, r0 = 1, and spring
constant, ks = 1, resulting in a smooth potential of the form

V (�q1, . . . , �qN ) =

N−1
∑

i=1

ks
2

(‖�qi+1 − �qi‖ − r0)
2
.

Fig. 4.1. An impact pendulum chain: Hard spheres are connected with linear springs, each with
the same spring constant and nonzero rest length. Collisions occur both between pairs of spheres
and between spheres and the hard wall.

The entire spring chain is attached to the origin, with a hard wall in the x = 0
plane. The diameter of each sphere is set to 0.9, just less than the spring rest length,
to allow for a moderate collision frequency both between spheres and with the wall.
For simplicity, it is assumed that each sphere has unit mass.

In our first experiment, we start with a chain of five spheres aligned along the
x-axis with unit spacing. The second and fourth spheres are given random initial
velocity of unit length, and we follow the dynamics for 5000 units of time. This
results in approximately 12000 collisions over the time interval. We apply each of the
numerical methods with a decreasing sequence of time stepsizes ranging from 0.3 to
0.001. A method is considered unstable if the energy deviates by more than 100%
over the course of the simulation.

Figure 4.2 shows the conservation of energy as a function of stepsize. As expected
the PSA is only first-order accurate, while the other methods are second-order. The
CVA conserves energy far better than the PSA, but about an order of magnitude
worse than the MCVA and PCVA. It is interesting that the MCVA and PCVA do so
well since they were designed to conserve H∆t

[2,V V ] (as opposed to H) and only in steps
with collisions. The PSA has such severe energy drift that it was stable only for the
smallest stepsizes.

In Figure 4.3, the conservation of the modified Hamiltonian, H∆t
[2,V V ], is shown as

a function of stepsize. Recall that the Verlet method with a fixed stepsize conserves
H∆t

[2,V V ] with fourth-order accuracy. As expected, only the PCVA and MCVA retain

H∆t
[2,V V ] as a higher-order invariant. The CVA and PSA conserve H∆t

[2,V V ] about as
well as they conserve the unmodified energy, H.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

144 STEPHEN D. BOND AND BENEDICT J. LEIMKUHLER

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Stepsize

M
a

x
im

u
m

 E
n

e
rg

y
 E

rr
o

r

 

 

2nd order line

PSA

CVA

PCVA

MCVA

Fig. 4.2. Maximum absolute energy error as a function of time stepsize.
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Fig. 4.3. Maximum absolute “modified” energy error as a function of time stepsize.

To investigate the energy drift, in Figure 4.4 we show the absolute deviation
in energy as a function of time for a moderate stepsize of 0.02. The collisions have
destabilized the PSA, and energy is severely drifting. Energy is drifting for the CVA as
well, although not as severely as for the PSA. The PCVA and MCVA are remarkably
stable with no visible sign of energy drift over a relatively long time interval with
more than 10 000 collisions. We stress that the method approximates the modified
Hamiltonian only to fourth-order accuracy, and no rigorous claim is made regarding
the long-term stability of either the PCVA or MCVA method on long time intervals.
However, the example given here nonetheless demonstrates a remarkable numerical
stability, suggesting a practical stability enhancement. The situation is reminiscent
of enhanced stability seen in “pseudosymplectic” numerical methods [2] which admit
partial modified Hamiltonians of a given order of accuracy greater than the classical
method order.
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Fig. 4.5. Velocity auto-correlation function for the first sphere in the chain.

As pointed out by Tupper [20], projection-based methods may perform badly in
terms of statistics. Good conservation of energy (by methods which do not explicitly
conserve energy) typically suggests good equilibrium statistics, but the litmus test for
evaluating the performance of molecular dynamics algorithms for statistical mechanics
is the computation of the normalized velocity autocorrelation function [6],

A (tk) :=
〈v (t + tk) · v (t)〉

〈v (t) · v (t)〉
.

The average, 〈·〉, is taken over all time-origins t. To test the performance of our method
for statistics, we increased the length of the simulation 10 times, and computed the
velocity autocorrelation function for the first sphere in the chain using a stepsize of
0.02 as shown in Figure 4.5. The CVA, PCVA, and MCVA all produce similar velocity
autocorrelation curves, while the curve produced by the PSA is clearly different.
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5. Conclusion. We have investigated numerical methods for simulating the
Hamiltonian N-body problem subject to hard-sphere inequality constraints. The dy-
namics of these mixed systems is characterized by smooth flow between collisions
with impulsive forces at points of collision. The inclusion of these impulses makes
traditional backward error analysis inappropriate since the flow is discontinuous and
cannot be interpreted using a single modified smooth Hamiltonian system. We have
derived two new methods which respect the underlying modified Hamiltonian of the
numerical method (Verlet) used for the smooth system.

The first method, the MCVA, applies a higher-order symplectic integrator to the
flow of the modified system in steps with collisions. At points of collision, the MCVA
uses a modified collision operator which exactly conserves the modified Hamiltonian
of the smooth system. In steps without collisions, the method reduces to the standard
Verlet map. The second method, the PCVA, uses velocity rescaling to exactly conserve
the modified Hamiltonian during steps with collisions. Like MCVA, this method also
reduces to the standard Verlet map in steps without collisions.

In numerical experiments, we have compared the two new methods with the PSA
and CVA. When applied to a long time simulation of a hard-sphere chain, the new
methods have demonstrated dramatically improved energy conservation with very
little drift. The additional computational cost of the MCVA and PCVA should not
be prohibitive if collisions are relatively infrequent.
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